

CS 7267
MACHINE LEARNING

PROJECT 1

UNSUPERVISED LEARNING

INSTRUCTOR

 Dr. Zongxing Xie

Michael Rizig

001008703

2

1. ABSTRACT

In this project, we are tasked with applying k-mean clustering to a dataset. This clustering

method utilizes K number of averages, and groups the data into clusters based on their distance

to the closest mean. By repeating k-mean clustering a few times, the clusters become more

accurte and representative of their data. The data is then plotted to view the clustering accuracy

and view the clear differences between clusters. Our kmtest dataset utilized 2 dimentional data,

while the iris dataset utilizes 4 dimentional data. This means our program must adapt to any type

of input data. Each dataset will be clustered with and without normalization to visualize the

impact of normalizing data.

To view revison history and step by step building of this project view on my github:

https://github.com/michaelrzg/Machine-Learning-Projects-Python

2. TEST RESULTS

2.1 Clustering with K-means algorithm for kmtest dataset
EACH RUN STARTS WITH A RANDOM STARTING CLUSTER LOCATION.

Figure 2.1.a: K=2 This 2d graph shows the clusters for the kmtest dataset WITHOUT

NORMALIZATION. Large non-precise groups, K is too small.

Figure 2.1.b: K=3 This 2d graph shows the clusters for the kmtest dataset WITHOUT

NORMALIZATION We see that 3 groups are created

Figure 2.1.c: K=4 This 2d graph shows the clusters for the kmtest dataset WITHOUT

NORMALIZATION. We see that since the data has 4 natural groups, the algorithm runs perfectly

with K=4

Figure 2.1.d: K=5 This 2d graph shows the clusters for the kmtest dataset WITHOUT

NORMALIZATION. Since we have reached more groups that the data actually has, we see the

algorithm start to force a new group in places there is not one. K is too large.

Figure 2.1.e: K=2 This 2d graph shows the clusters for the kmtest dataset WITH

NORMALIZATION. Once again, we see 2 non-precise groups.

Figure 2.1.f: K=3 This 2d graph shows the clusters for the kmtest dataset WITH

NORMALIZATION With k=3 we see that general groups are created

Figure 2.1.g: K=4 This 2d graph shows the clusters for the kmtest dataset WITH

NORMALIZATION Once again we see that since the data has 4 natural groups, the algorithm

runs perfectly with K=4

Figure 2.1.h: K=5 This 2d graph shows the clusters for the kmtest dataset WITH

NORMALIZATION Once again, since we have reached more groups that the data actually has,

we see the algorithm start to force a new group in places there is not one. K is too large.

https://github.com/michaelrzg/Machine-Learning-Projects-Python

3

(a) (b)

(c)

(d)

(e)

(f)

(g)

(h)

-

Figure 2.1: (a) K=2 , (b) K=3, (c) K=4, (d) K=5, (e) K=2 NORMALIZED, (f) K=3 NORMALIZED,
(g) K=4 NORMALIZED (h) K=5 NORMALIZED

4

2.2 Test Results for Clustering with K-means algorithm for iris dataset

This dataset is a 4 dimensional dataset. EACH RUN STARTS WITH A RANDOM STARTING
CLUSTER LOCATION

Figure 2.2.a: K=2 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITHOUT NORMALIZATION. We see that two general groups form.

Figure 2.2.b: K=3 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITHOUT NORMALIZATION. We see that 3 groups form in different sections of graph.

Figure 2.2.c: K=4 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITHOUT NORMALIZATION. We see 4 groups forming, it seems like overfitting as the groups

are almost forced. K is too large.

Figure 2.2.d: K=5 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITHOUT NORMALIZATION. At this point we have way too many groups, and the meaning of

the groups is dampened.

Figure 2.2.e: K=2 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITH NORMALIZATION. We see that two general groups form.

Figure 2.2.f: K=3 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITH NORMALIZATION. We again see 3 general groups form

Figure 2.2.g: K=4 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITH NORMALIZATION. Once again, it seems that K=4 is too large for this data set

Figure 2.2.h: K=5 This 3-dimensional graph shows 3 of the 4 dimensions of each datapoint

WITH NORMALIZATION. K=5 is too many groups, graph loses some of its value.

5

(a) (b)

(c)

(d)

(e)

(f)

(g)

(h)

-

Figure 2.2: (a) K=2 , (b) K=3, (c) K=4, (d) K=5, (e) K=2 NORMALIZED, (f) K=3 NORMALIZED,

(g) K=4 NORMALIZED (h) K=5 NORMALIZED

6

3.Discussion

As we can see from the test results, as we increase the number of clusters (K), our clusters get

smaller and more precise and can be used more accurately. We see that having a small K value

leads to large general groups with not too much information or identification present. However,

having too many clusters can cause the clusters to overlap, taking away from the meaning of

each cluster. We also observe that normalizing the dataset leads to more accurate and tighter

clusters within each run. For the first dataset (kmtest), we can see that K=4 was the perfect

value for the algorithm, but K=5 led to forcing groups that weren’t exactly unique. For the second

dataset (iris) we saw that 3 was the perfect K value, and anything above loses some of its

meaning. Given more time, it would be interesting to apply this concept to image data to see

what types of images can be clustered.

4. CODES

4.1 Code for K-means algorithm for kmtest dataset

Michael Rizig

CS7247 Machine Learning

Professor Zongxing Xie

8/31/24

Assignment 1: K-means

import plot and math tools

import matplotlib.pyplot as plot

import seaborn as sea

import numpy

import random

#function to create initial predefiend number of cluster centers (K) with data

passed

Takes in number of clusters (K) and data

returns random cluster centers from within dataset

def createClusters(numberOfClusters,data):

create list to store cluster means

 clusterCenters = []

 #pick random values as clusters

 for i in range (numberOfClusters):

 x = random.randint(0,len(data))

 clusterCenters.append(data[x])

 return clusterCenters

return size of each current group

7

def groupSizes(K,groupings):

 # create list to store size of each current group

 groupSizes = [0 for i in range(K)]

 # find sizes of each group TODO: Fit this into other loop somehow

 for i in groupings:

 groupSizes[i[1]]+=1

 return groupSizes

group data into clusters based on distance from each cluster center

takes in center of clusters and groups data into closest cluster center

def groupData(clusterCenters,data):

 # list to assign groupings

 groupings = []

 #debug

 print("Randomly chosen cluster centers: ",clusterCenters)

 # for eaach data point,

 # calculate the distance between that point and each center

 for x in data:

 #list to hold each distance

 distances=[]

 #parse through each cluster center

 for cluster in clusterCenters:

 #init distanceto 0

 distance=0

 # calculate distance : sqrt(a^2 + b^2 + c^2...)

 # and add

 for i in range(len(cluster)):

 distance += numpy.sqrt((cluster[i]-x[i])**2)

 #

 #add it list for final comparison

 distances.append(distance)

 #assign the closest cluster center as group

 groupings.append((x,distances.index(min(distances))))

 #debug

 print("Grouping for each value set: ",groupings)

 return clusterCenters,groupings

#this function takes in current groupings, finds average of all values in each

group

#then recalls group data to new center clusters.

def recenterGroupings(K,groupings):

8

 # create list to store average point of each group

 groupAverage = [[0 for i in range(len(groupings[0][0]))] for u in range(K)]

 Sizes = groupSizes(K,groupings)

 print(Sizes)

 # for each datapoint structure: ([x,y,z,...],group#),

 # go through each value in list [x,y,z,...],

 # divide it by total # of comparable values (divide each x by total

appearences of x in group)

 # and add that weighted value to its appropriate spot in group avreages

 # at end of loop, we have average point of each group

 for datapoint in groupings:

 for i in range(len(datapoint[0])):

 groupAverage[datapoint[1]][i]+= datapoint[0][i] /Sizes[datapoint[1]]

 #debug

 #print(groupAverage)

 # now regroup data

 newCenters, newGroupings = groupData(groupAverage,[i[0] for i in groupings])

 return newCenters,newGroupings

#helper function for parseCSV

#checks if data is float in string format or not float

def isFloat(x):

 #try to see if passed value is float

 try:

 float(x)

 #return true if this doesnt fail

 return True

 #if we get an exception , it means that value can not be converted to float,

so it not one

 except:

 #return false

 return False

#function to parse data from csv and return each set of values as list within

list

takes in string path of csv file and returns all numeric values as list of

lists

def parseCSV(path):

 #open file

 file = open(path,'r',encoding='utf-8-sig')

 #place to store lines

9

 lines=[]

 #insert each line into lines list

 for x in file:

 lines.append(x)

 #place to store value lists

 values = []

 #split each line, then filter out non-numeric values

 for i in lines:

 x= i.split(" ")

 x.remove('')

 print(x)

 out = [a for a in x if isFloat(a)]

 #insert into list

 values.append([float(i) for i in out])

 #return list of values list

 return values

MAIN:

#print(parseCSV("G:\KSU\CS7267-Machine Learning\Assignments\Project 1 -

Unsupervised Learning\Data\iris.csv"))

#parse Data

data = parseCSV("G:\KSU\CS7267-Machine Learning\Assignments\Project 1 -

Unsupervised Learning\Data\kmtest.csv")

#normalize data (delete this section for non-normalized data runs)

K = 5

#generate K number of random cluster centers

clusterCenters = createClusters(K,data)

#group data based on random clusters

clusters,groupings = groupData(clusterCenters,data)

#print(groupings)

#find average of each data group, use that as new center, regroup based on

average

newCenters,newGroupings = recenterGroupings(K,groupings)

#print new grouping

#print(groupSizes(len(newCenters),newGroupings))

#colors for each cluster

colors = ["red","blue","green","yellow","purple"]

#make plot 3d

10

#plot.axes(projection='3d')

#plot each datapoint

for duple in newGroupings:

 plot.scatter(duple[0][0],duple[0][1], color=colors[duple[1]])

#title, save, and show plot

plot.title(f"K={K} kmtest dataset with normalization:")

plot.savefig(f"Figures/kmtest-normalized/K={K} kmtest-with-norm.png")

plot.show()

4.2 Code for K-means algorithm for iris dataset

Michael Rizig

CS7247 Machine Learning

Professor Zongxing Xie

8/31/24

Assignment 1: K-means

import plot and math tools

import matplotlib.pyplot as plot

import seaborn as sea

import numpy

import random

#function to create initial predefiend number of cluster centers (K) with data

passed

Takes in number of clusters (K) and data

returns random cluster centers from within dataset

def createClusters(numberOfClusters,data):

create list to store cluster means

 clusterCenters = []

 #pick random values as clusters

 for i in range (numberOfClusters):

 x = random.randint(0,len(data))

 clusterCenters.append(data[x])

 return clusterCenters

return size of each current group

def groupSizes(K,groupings):

 # create list to store size of each current group

 groupSizes = [0 for i in range(K)]

 # find sizes of each group TODO: Fit this into other loop somehow

11

 for i in groupings:

 groupSizes[i[1]]+=1

 return groupSizes

group data into clusters based on distance from each cluster center

takes in center of clusters and groups data into closest cluster center

def groupData(clusterCenters,data):

 # list to assign groupings

 groupings = []

 #debug

 print("Randomly chosen cluster centers: ",clusterCenters)

 # for eaach data point,

 # calculate the distance between that point and each center

 for x in data:

 #list to hold each distance

 distances=[]

 #parse through each cluster center

 for cluster in clusterCenters:

 #init distanceto 0

 distance=0

 # calculate distance : sqrt(a^2 + b^2 + c^2...)

 # and add

 for i in range(len(cluster)):

 distance += numpy.sqrt((cluster[i]-x[i])**2)

 #

 #add it list for final comparison

 distances.append(distance)

 #assign the closest cluster center as group

 groupings.append((x,distances.index(min(distances))))

 #debug

 print("Grouping for each value set: ",groupings)

 return clusterCenters,groupings

#this function takes in current groupings, finds average of all values in each

group

#then recalls group data to new center clusters.

def recenterGroupings(K,groupings):

 # create list to store average point of each group

 groupAverage = [[0 for i in range(len(groupings[0][0]))] for u in range(K)]

 Sizes = groupSizes(K,groupings)

12

 print(Sizes)

 # for each datapoint structure: ([x,y,z,...],group#),

 # go through each value in list [x,y,z,...],

 # divide it by total # of comparable values (divide each x by total

appearences of x in group)

 # and add that weighted value to its appropriate spot in group avreages

 # at end of loop, we have average point of each group

 for datapoint in groupings:

 for i in range(len(datapoint[0])):

 groupAverage[datapoint[1]][i]+= datapoint[0][i] /Sizes[datapoint[1]]

 #debug

 #print(groupAverage)

 # now regroup data

 newCenters, newGroupings = groupData(groupAverage,[i[0] for i in groupings])

 return newCenters,newGroupings

#helper function for parseCSV

#checks if data is float in string format or not float

def isFloat(x):

 #try to see if passed value is float

 try:

 float(x)

 #return true if this doesnt fail

 return True

 #if we get an exception , it means that value can not be converted to float,

so it not one

 except:

 #return false

 return False

#function to parse data from csv and return each set of values as list within

list

takes in string path of csv file and returns all numeric values as list of

lists

def parseCSV(path):

 #open file

 file = open(path,'r',encoding='utf-8-sig')

 #place to store lines

 lines=[]

 #insert each line into lines list

 for x in file:

 lines.append(x)

13

 #place to store value lists

 values = []

 #split each line, then filter out non-numeric values

 for i in lines:

 x= i.split(",")

 out = [a for a in x if isFloat(a)]

 #insert into list

 values.append([float(i) for i in out])

 #return list of values list

 return values

MAIN:

#print(parseCSV("G:\KSU\CS7267-Machine Learning\Assignments\Project 1 -

Unsupervised Learning\Data\iris.csv"))

#parse Data

data = parseCSV("G:\KSU\CS7267-Machine Learning\Assignments\Project 1 -

Unsupervised Learning\Data\iris.csv")

#normalize data (delete this section for non-normalized data runs)

K = 5

#generate K number of random cluster centers

clusterCenters = createClusters(K,data)

#group data based on random clusters

clusters,groupings = groupData(clusterCenters,data)

#print(groupings)

#find average of each data group, use that as new center, regroup based on

average

newCenters,newGroupings = recenterGroupings(K,groupings)

#print new grouping

#print(groupSizes(len(newCenters),newGroupings))

#colors for each cluster

colors = ["red","blue","green","yellow","purple"]

#make plot 3d

plot.axes(projection='3d')

#plot each datapoint

for duple in newGroupings:

 plot.scatter(duple[0][0],duple[0][1],duple[0][2], color=colors[duple[1]])

14

#title, save, and show plot

plot.title(f"K={K} Iris dataset with normalization:")

plot.savefig(f"Figures/K={K} Iris-with-norm.png")

plot.show()

